Electronic and Resonance Raman Spectra of Mixed-valence, Linear-chain Complexes of Platinum and Palladium with 1,2-Diaminocycloalkanes (N-N), $[M''(N-N)_2][M''(N-N)_2X_2]X_4$ (X = Halogen)

Robin J. H. Clark,* Mohamedally Kurmoo, and David N. Mountney
Christopher Ingold Laboratories, University College London, 20 Gordon Street, London WC1H 0AJ
Hans Toftlund
Department of Chemistry, Odense University, DK-5230 Odense M, Denmark

The electronic and resonance Raman spectra of a series of halogen-bridged, linear-chain, mixed-valence complexes, $[Pt^{II}(N-N)_2][Pt^{IV}(N-N)_2X_2]X_4$ [N-N=1,2-diaminocyclohexane (dach);X = CI, Br, or I], as well as of the complexes $[Pd''(dach)_2][Pd''(dach)_2CI_2]CI_4$ and $[Pt^{II}(N-N)_2][Pt^{IV}(N-N)_2Br_2]Br_4$ [N-N=1,2-diaminocyclopentane (dacp)], have been recorded atca. 295, 80, and 10 K. Excitation within the contours of the axially polarized M[™]←M[™] intervalence band of each complex leads to the appearance of long overtone progressions, v_1v_1 , in the resonance Raman spectrum, where v₁ is the totally symmetric axial metal-halogen stretching mode. The excitation profile of the v₁ band maximizes in each case on the low-energy side of the intervalence band maximum. The wavenumbers of the v₁ band, intervalence band maximum, and excitation profile maximum of the complexes decrease in the order CI > Br > I, Pt > Pd, and dach > dacp. Although the mixed-valence complexes are chemically pure, they form as mixtures of conformational isomers unless the resolved ligand is used in their preparations. Such conformers have different intervalence band maxima and different v_1 values and, in consequence, as the exciting-line wavenumber (\tilde{v}_0) is changed, different conformers have their v₁ bands resonance-enhanced, and the apparent value of v₁ and its overtones change. These observations are discussed with reference to the steric hindrance between the cycloalkane rings in mixed-valence linear-chain complexes.

Halogen-bridged, linear-chain, mixed-valence complexes of platinum of the type $[M^{11}(N-N)_2][M^{12}(N-N)_2X_2]Y_4(N-N) =$ a bidentate or two monodentate amines; X = Cl, Br, or I; Y = ClO₄, Cl, Br, I, BF₄, HSO₄, or polymeric copper-halide chains) have recently been the subject of extensive physical studies, in particular X-ray diffraction, photoelectron, electronic, and resonance Raman (r.R.) spectroscopy, as well as electrical conductance studies.¹⁻⁸ Such complexes have many highly anisotropic properties, especially their conductance and their electronic and resonance Raman spectra; the last is dominated by bands attributable to the symmetric stretching mode, $v(X-Pt^{1V}-X)$ (v_1), of the chain. Previous work suggests that there is a close relationship between the wavenumber of v_i , the wavenumber of the intervalence band maximum, and the Pt^{II} · · · Pt^{IV} separation along the linear chains. The recent syntheses and crystallographic studies of the complexes $[Pt^{11}{(-)-1(R),2(R)-dach}_2][Pt^{1V}{(-)-1(R),}$ 2(R)-dach $_2X_2$ X_4 (X = Cl or Br, dach = 1,2-diaminocyclohexane), which have been shown to have the shortest known Pt¹¹ · · · Pt^{1v} distances, have provided the opportunity further to investigate these relationships, as well as to ascertain the effects on the r.R. spectra of the presence of different conformers of the ligand. The latter effects prove to be pro-

Many fewer palladium than platinum complexes of this sort are known, since the analogous syntheses are difficult to control and the products are not very stable. However, one new complex of this type, namely $[Pd^{II}(dach)_2][Pd^{IV}(dach)_2-Cl_2]Cl_4$, has been synthesised and studied. In addition, one 1,2-diaminocyclopentane (dacp) complex of platinum has also been studied for comparative purposes. This study is concerned, therefore, with the electronic and r.R. spectra of the complexes $[Pt\{(-)-dach\}_2][Pt\{(-)-dach\}_2Cl_2]Cl_4$ (1), $[Pt-\{(-)-dach\}_2][Pt\{(-)-dach]_2][Pt\{(-)-dach\}_2][Pt\{(-)-dach]_2][Pt[(-)-dach]_2][Pt[(-)-dach]_2][Pt[(-)-dach]_2][Pt[(-)-dach]_2][Pt[(-)-dach]_2][Pt[(-)-dach]_2][Pt[(-)-dach]_2][Pt[(-)-dach]_2][Pt[(-)-dach]_2][Pt[(-)-dach]_2][Pt[(-)-dach]_2][Pt[(-)-dach$

 $Br_2]Br_4$ (5), $[Pt\{(-)-dacp\}_2][Pt\{(-)-dacp\}_2]Br_2]Br_4$ (6), $[Pt\{(-)-dach\}_2][Pt\{(-)-dach\}_2]I_4$ (7), and $[Pd(dach)_2][Pd(dach)_2Cl_2]Cl_4$ (8).

Experimental

Preparative Details.—The 1,2-diaminocyclohexanes were separated into geometrical and optical isomers as described earlier.10 1,2-Diaminocyclopentane was prepared and resolved as described by Toftlund and Pedersen. 11 The preparations of $[Pt\{(-)-dach\}_2][Pt\{(-)-dach\}_2X_2]X_4$ (X = Cl or Br) have been described earlier. The corresponding (\pm) -dach and cisdach complexes were prepared analogously. The compound $[Pt{(-)-dach}{(+)-dach}]Br_2$ used to obtain the $[Pt{(-)-dach}]$ dach{(+)-dach}][Pt{(-)-dach}{(+)-dach}Br₂]Br₄ salt was prepared in two steps. First, $cis-[Pt{(-)-dach}Cl_2]$ was obtained by the reaction between $K_2[PtCl_4]$ and (-)-dach. Subsequently this salt was treated with (+)-dach and the meso-salt was precipitated with lithium bromide. The mixedvalence complex was obtained as above. The compound $[Pt{(-)-dach}_2][Pt{(-)-dach}_2I_2]I_4$ was obtained by heating an aqueous solution of the corresponding chloride complex in sodium iodide solution.

The palladium complex [Pd(dach)₂][Pd(dach)₂Cl₂]Cl₄ was obtained by the following method. [Pd(dach)₂]Cl₂ was prepared by stirring an aqueous solution of K₂[PdCl₄] (1 g) with dach (ca. 1 g) for 15 min. A yellow-brown precipitate was obtained, which dissolved on being warmed to 50 °C. The clear solution was then evaporated to near dryness under vacuum at 40 °C. Colourless needles were obtained on cooling. To an aqueous solution of [Pd(dach)₂]Cl₂ (0.5 g), sodium chloride (0.5 g) was added and the solution cooled to 0 °C. Chlorine gas was then bubbled through the cold solution. Bronze-brown microcrystals of the mixed-valence complex were obtained.

Recrystallisation was not attempted due to the low stability of palladium(IV) amine complexes (Found: C, 32.0; H, 6.7;

Cl, 23.6; N, 12.5. $C_{12}H_{28}Cl_3N_4Pd$ requires C, 32.65; H, 6.4; Cl, 24.1; N, 12.7%).

Instrumental Details.—Electronic spectra were recorded using a Cary 14 spectrometer by transmission, using pressed discs of the complexes dispersed in alkali halide. Infrared spectra were measured on a Perkin-Elmer 225 spectrometer.

Raman spectra were recorded on both a Spex 1401 double monochromator (1 200 line mm⁻¹ Bausch and Lomb gratings) and a Spex 14018 (R6) double/triple monochromator (1 800 line mm⁻¹ Jobin-Yvon holographic gratings). Exciting radiation was provided by Coherent Radiation models CR3 Ar⁺ or Kr⁺ and CR15UV Ar⁺ lasers. Detection was by photon counting employing cooled RCA C31034 photomultiplier tubes. Room-temperature spectra were obtained using the rotating sample technique and at ca. 80 K from pressed discs of the complexes. A cylindrical lens was used to prevent decomposition by line-focusing the beam. Spectra at lower temperatures (to a nominal ca. 10 K) were obtained by use of an Air-Products Displex cryostat.

The relative intensity data given in the Tables are based on the products of peak heights and full-widths at half-maximum. The band intensities given in Figure 2 (see below) are based on peak heights only, and were measured relative to that of the v_1 (a_1) band of SO_4^{2-} and corrected for the response of the instrument. Band wavenumbers were determined by reference to the emission lines of neon.

Results and Discussion

Stereochemical Considerations.—1,2-Diaminocyclohexane has the 'chair' conformation, it is chiral and stereoselective to complex formation. It has two geometrical isomers, cis and trans. In the latter (RR,SS) the amino-donor groups are either both equatorial or both axial, while in the former the amino-donor groups occupy both axial as well as equatorial positions. The ligand can be separated into the cis and trans isomers. The trans isomers can each be further resolved into their (+) and (-) enantiomers 13,14 while the cis isomer is a meso form. It is worth noting that, for each enantiomer of the trans isomer, only one conformer (λ for RR and δ for SS) can chelate to a metal ion, whereas the cis isomer can do so either as λ or as δ conformers.

1,2-Diaminocyclopentane is also chiral and stereoselective. However, for *trans*-dacp, the cyclic ring becomes more strained on chelation than does that of *trans*-dach.

Structural Considerations.—The structures of only two of these complexes have been solved completely, namely $[Pt\{(-)-dach\}_2][Pt\{(-)-dach\}_2X_2]X_4$ (X=Cl or Br). The structure consists in both cases of long chains, made up of stacks of alternate $[Pt^{II}(dach)_2]^{2+}$ in square-planar coordination and $[Pt^{IV}(dach)_2X_2]^{2+}$ in square-bipyramidal coordination. The halogens in the latter bridge the units together into chains. Differences between complexes containing cis or trans ligands would be expected mainly in the orientation of the cycloalkane rings with respect to the MN₄ plane. Some selectivity in the complex formation from the $[MCI_4]^{2-}$ and a cis-trans mixture of diamines is expected. For dach, the trans isomer is a better ligand than cis, but the opposite is true for dacp.

For complexes containing only the *trans-RR* isomer the C_6 cyclohexane ring will lie in the MN₄ plane [Figure 1(a)—(c)]. This has been shown to be the case for complexes (1) and (2) by Larsen and Toftlund ⁹ [Figure 1(a)]. In the crystal structure ¹⁵ of *cis*-[Pt(*cis*-dach)Cl₂] the cyclohexane ring is in the chair conformation, resulting in a nearly perpendicular orientation of the C_6 ring plane with respect to the MN₄ plane

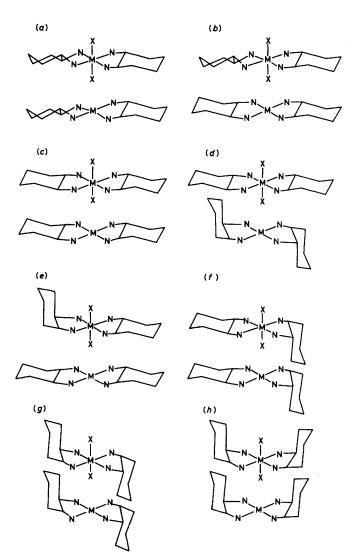


Figure 1. Representations of some of the possible structures of linear-chain 1,2-diaminocycloalkane (N-N) complexes (X = halogen)

[compare Figure 1(d)—(h)]. For complexes containing two *cis* ligands, two orientations of the dach rings with respect to the MN₄ plane are possible. These are shown in Figure 1(g) and (h). No structural information is available for the bis-*cis*-dach platinum complex but both stereochemistries have been shown to exist for copper(II) chelates ¹⁶ of *cis*-1,3-diamino-cyclohexane.

Finally, the orientation of the C^1-C^2 bond in relation to the MN₄ plane would define the conformations (δ or λ) of the chelates. For a given chirality of a *trans*-1,2-diamine, the conformation of the chelate ring is defined and no conformational inversions are possible in the complex. If the ligands (N-N) are both (+) or (-)(RR), a $\lambda\lambda$ or $\delta\delta$ conformation is obtained [Figure 1(a)]. If, however, one is (-) and the other (+) a $\lambda\delta$ (*meso*) conformation [Figure 1(c)] is expected. Since the *cis* isomer cannot be resolved, conformations $\lambda\lambda$, $\delta\delta$, and $\lambda\delta$ are all possible; in the case of [Pt(en)₂]²⁺, a $\lambda\delta$ conformation is observed in the crystal.¹⁷

Electronic Spectra.—The crystals of the complexes are dichroic and have a metallic sheen which disappears on their being ground. The colours of the crystals and those of their

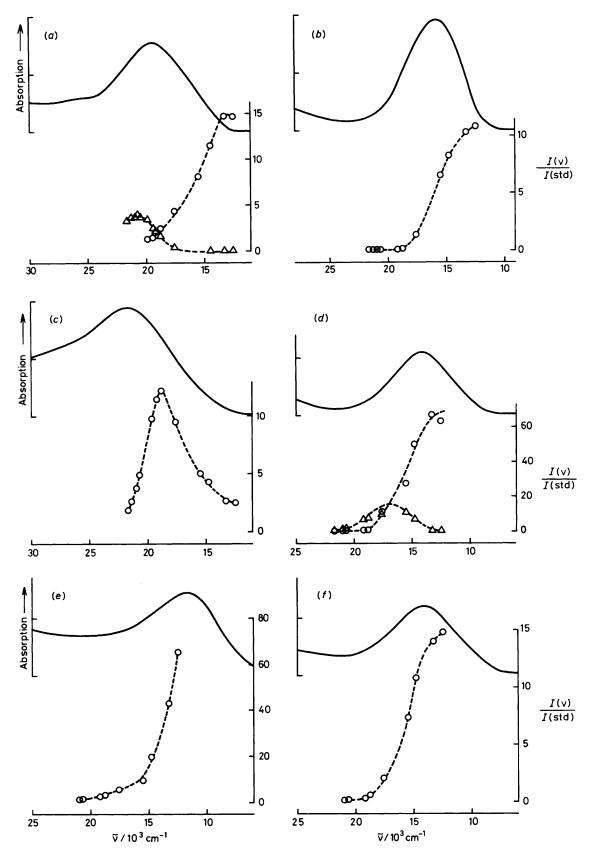


Figure 2. Electronic spectra (alkali halide discs, 295 K) and excitation profiles (ca. 80 K, based on relative peak heights) of the v_1 bands (\bigcirc) of (a) $[Pt\{(-)-dach\}_2][Pt\{(-)-dach\}_2$

Table 1. Summary of data on 1,2-diaminocycloalkane complexes

	Col	lour	Intervalence band	Excitation profile			Progression	í	$I(2v_1)^d$
Complex	Crystal a	Powder b	$v_{\text{max.}}^{c}/\text{cm}^{-1}$	$v_{\text{max.}}^{d}/\text{cm}^{-1}$	ω_1 d /cm $^{-1}$	$x_{11} ^{d}/\text{cm}^{-1}$	in v ₁ d	λ_o/nm	$I(v_1)$
(1)	Green	Purple	19 400	13 100	285.5 ± 0.5	-0.85 ± 0.05	$11v_1$	647.1	0.69
e			ca. 24 000	20 800	310.3 ± 0.3	-0.93 ± 0.03	$9v_1$	457.9	0.64
(2)	Gold	Blue	15 900	≤12 500	161.4 ± 0.3	-0.35 ± 0.02	$10v_1$	752.5	0.66
(3)	Purple	Brown	21 800	18 800	187.2 ± 0.3	0.0 ± 0.03	$8v_1$	476.5	0.58
(4)	Gold	Blue	16 500	≤12 500	164.8 ± 0.3	-0.33 ± 0.03	$8v_1$	752.5	0.69
(5)	Gold	Blue	16 000	≤ 12 500	163.1 ± 0.3	-0.33 ± 0.03	$9v_1$	752.5	0.66
(6)	Gold	Blue	14 300	≤12 500	163.1 ± 0.3	-0.48 ± 0.03	$9v_1$	752.5	0.60
f				17 000	184.5 ± 0.5	-0.2 ± 0.1	$6v_1$	476.5	0.30
(7)	Black	Blue	11 700	<12 500 °	123.8 ± 0.5	-0.28 ± 0.08	8v _i	752.5	0.53
(8)	Brown	Blue	14 000	≤12 500 °	242.7 ± 0.7	-0.66 ± 0.08	6ν _ι	752.5	0.54
g			ca. 25 000		301.7 ± 0.5	-0.9 ± 0.1	$5v_i$	488.0	0.54

^a By reflected light. ^b By transmission. ^c At ca. 295 K. ^d At ca. 80 K. ^{e,f,g} Complexes [Pt(cis-dach)₂][Pt(cis-dach)₂Cl₂]Cl₄, [Pt(cis-dacp)₂] [Pt(cis-dacp)₂Br₂]Br₄, and [Pd(cis-dach)₂Cl₂]Cl₄ respectively, these being deduced to be present in the samples of (1), (6), and (8) obtained from the original preparations.

Table 2. Wavenumbers (cm⁻¹), relative intensities, full-widths at half-maximum $(\Delta \tilde{v}_{\frac{1}{2}})$, and assignments of bands in the r.R. spectra *

(a) [Pt{(-	-)-dach $_2$][Pt $I(v_1v_1)$	{(-)-dach}2Cl2]C	CI ₄
\tilde{v}/cm^{-1}	$I(\mathbf{v}_1)$	$\Delta \tilde{v}_{\frac{1}{2}}/\text{cm}^{-1}$	Assignment
132.2			
153.0			
179.1			
196.4			
217.6			$\delta(N-Pt-N)$
281.9	1.00	11.4	$v_1(Cl-Pt^{1V}-Cl)_{sym}$
360.6			$v_2(Cl-Pt^{IV}-Cl)_{asym}$
413.6			$v_1 + 132.2$
434.8			$v_1 + 153.0$
563.1	0.69	21.3	$2v_1$
627.5			v(ring)
715.5			$2v_1 + 153.0$
843.5	0.51	31.5	3v ₁
909.7			$v_1 + v(ring)$
990.9		40	$3v_1 + 153.0$
1 121.3	0.37	42	4v ₁
1 187.9			$2v_1 + v(ring)$
1 268.2	0.00		$4v_1 + 153.0$
1 397.5	0.30	51	$5v_1$
1 463			$3v_1 + v(ring)$
1 541	0.20	50	$5v_1 + 153.0$
1 673	0.20	59. 71	6ν ₁
1 941	0.16	71	$7v_1$
2 212	0.12	75 80	8v ₁
2 480	0.08 ca. 0.05	ca. 90	9v ₁ 10v ₁
2 745 3 005	<i>ca</i> . 0.05 < 0.05	<i>ca</i> . 90 >90	10v ₁ 11v ₁
3 003	< 0.03	<i>></i> 90	11 11

(b) [Pt(cis-d	lach)2][Pt(cis-d	lach)2Cl2]Cl4	
136.0			
162.4			
196.0			
295			
299.5			
308.6	1.00	11	v_i
361.4			v_2
453			$v_1 + (162.4 \text{ or }$
			136.0)
504			$v_1 + 196.0$
589			$v_1 + 299.5$
614.1	0.64	24	$2v_1$
669.7			$v_1 + 361.4$
882			$2v_1 + 299.5$
920.0	0.46	35	$3v_1$
972			$2v_1 + 361.4$

1 028)
1 036			>ν(C−N)
1 061			v(C-N)
1 180			$3v_1 + 299.5$
1 223.5	0.28	46	4v ₁
1 278			$3v_1 + 361.4$
1 305			- 1
1 343			δ (H-C-H)
1 363			} o(H-C-H)
1 522.8	0.17	55	$5v_1$
1 822	0.09	65	$6v_1$
2 120	ca. 0.05	ca. 75	$7v_1$
2 420	< 0.05	>75	$8v_1$
2 710	< 0.05	>75	$9v_1$
3 007			v(C-H)
3 066			ν(C-H)
3 299			$v_1 + v(C-H)$
3 362			$v_1 + v(C-H)$

* Obtained as a CsCl disc at ca. 80 K with (a) 647.1 and (b) 457.9 nm excitation lines.

powders are listed in Table 1. The electronic transmission spectra (Figure 2) are characterised by strong bands, assigned to the intervalence $M^{IV} \leftarrow M^{II}$ transition in each case. The band maxima are observed to decrease in wavenumber in the order Cl > Br > I and Pl > Pl. For the different isomers of the dach ligand, for the same metal and halogen, the trend in the electronic band maxima is found to be $cis > meso > trans \sim racemate$.

The wavenumber of the intervalence band is a measure of the extent of interaction between M^{II} and M^{IV} , which in turn depends (among other factors) on the $M^{II} \cdots M^{IV}$ separation; i.e. a decrease in the $M^{II} \cdots M^{IV}$ separation (presumably on account of the metal ions thus being more nearly equivalent) results in a decrease in the intervalence transition energy. The latter also depends on the halogens, decreasing with increasing degree of covalency of the $M^{IV}-X$ bond, as well as on the stereochemistry of the ligand (N-N). As indicated above, the complex with cis-N-N results in the highest $M^{IV} \leftarrow M^{II}$ transition energy, this being a consequence of the long $P^{II} \cdots P^{IV}$ distance which is itself a consequence of steric repulsion between these isomeric forms of the ligand in the complex along the chain direction.

Table 3. Wavenumbers (cm⁻¹), relative intensities, full-widths at halfmaximum, and assignments of bands in the r.R. spectra *

	ord assignments of order of the control of the cont		K. spectra		-dach}2][Pt{(±)-	dach}2Br2]Br4
(/ L = -(()	$I(v_1v_1)/$			67.7 94.5		
ν̄/cm ⁻¹	$I(v_1)$	Δν̃ _* /cm ⁻¹	Assignment	94.3 161.0	1.00	9.1
65.9		<u>-</u> -	•		1.00	9.1
94.8				194.9		
160.7	1.00	10.2	ν_1	208.7		
194.6			•	255.5		15.0
226			$v_1 + 65.9$	322.4	0.66	17.3
255.0			$v_1 + 94.8$	355.9		
321.3	0.66	18.1	$2v_1$	370		
356.3	0.00	10.1	$v_1 + 194.6$	416.1		
415.0			$2v_1 + 94.8$	482.7	0.41	25.2
479.4	0.43	26.8		577.6		
	0.43	20.6	3V ₁	642.5	0.27	34
574.3			$3v_1 + 94.8$	735		
628	0.37	24	v(ring)	799.6	0.16	39
638.3	0.27	34	4v ₁	958.6	0.09	43
733			$4v_1 + 94.8$	1 117.3	0.05	47
795.2	0.17	39	5ν ₁	1 272	< 0.05	>50
890			$5v_1 + 94.8$	1 430	< 0.05	>50
951.9	0.11	48	6v ₁			
1 109.5	0.07	52	$7v_i$		CsBr discs at c	
1 2 67	0.05	60	8v ₁	752.5, and (d)	752.5 nm excita	tion.
1 417	ca. 0.03	ca. 70	$9v_1$			
1 570	< 0.03	>70	10v ₁			
			• • •	Table 4 Wave	numbers (cm ⁻¹),	relative intensit
	lach)2][Pt(cis-daci	h)2Br2]Br4			d assignments of	
87.3				(a) [Pt((_),	dacp}2][Pt{(-)-	dacn).Br.IBr.
152.4				(4) [1 (()	$I(v_1v_1)/$	2000)/251/1514
187.2	1.00	10.2	v_1	ṽ/cm ^{−1}	$I(v_1)$	Δῦ₄/cm ⁻¹
209.3				•	1(41)	MV ₂ /CIII
224.0				69.3		
242.8				98.3	1.00	12.0
303.7				162.2	1.00	13.8
342.5			$v_1 + 152.4$	208.6		
374.9	0.58	22.0	$2v_1$	238.0		
430.3	3,00		$v_1 + 242.8$	259.8		
456.8			$v_1 + 303.7$	323.5	0.60	23.6
492.5			V1 303.7	370,9		
	0.27	32.3	2	421.3		
562.7	0.37	34.3	3v ₁	482.6	0.33	32.3
611.8		40	$2v_1 + 242.8$	530		
752.5	0.27	49	4v ₁	585		
806.8			$3v_1 + 242.8$	643.3	0.21	44
939.1	0.15	59	5v ₁	744.6	0.21	**
985			$4v_1 + 242.8$	800.3	0.11	50
1 130.8	0.10	71	6ν ₁		0.11	30
1 214			δ(H-C-H)	906	0.06	57
1 319	0.05	80	$7v_1$	957.0	0.06	57
1 500	< 0.05	>80	8v ₁	1 115	0.04	65
	*****	,	• • •	1 270	ca. 0.02	ca. 75
(a) ID4(()	المعملة ١٠٠٧ مامملة) (dash) (() doob)Du IDu	1 430	< 0.02	>75
73.5	-uacn}((+)-uacn	}][Fi{(-)-dacn}{	(+)-dach}Br ₂]Br ₄	(b) [Pt(cis-d	acp)2][Pt(cis-dac	p) ₂ Br ₂]Br ₄
94.4				105.3		
151.2				158.3		
163.5	1.00	8.3	v_1	165.7		
194.5		•	••	183.7	1.00	9.5
210.6				209.0	1.00	7.0
242.2				236.8		
			. 1 04 4			
257.7	0.60	16.5	$v_1 + 94.4$	333		
327.6	0.69	16.5	2v ₁	348	0.00	
355.9			$v_1 + 194.5$	368.5	0.30	14.2
378.9			$v_1 + 210.6$	392.5		
420.0	_		$2v_1 + 94.4$	422		
490.4	0.43	23.6	$3v_1$	513.6		
581			$3v_1 + 94.4$			
626.8			v(ring)	550.3	0.11	16.5
652.8	0.27	31	4v ₁	582.0		
815.4	0.20	42	5v ₁	615.7		
974.6	0.13	49	6ν ₁	734.0	0.05	21
1 135	0.07	55	$7v_1$	765.7	0.05	
1 295	ca. 0.05	ca. 60	8v ₁	798.5		
	· · · · · · · · ·	· · · · · ·	0.11	170,3		

67.7			
94.5			
161.0	1.00	9.1	v_1
194.9			
208.7			
255.5			$v_1 + 94.5$
322.4	0.66	17.3	$2v_1$
355.9			$v_1 + 194.9$
370			$v_1 + 208.7$
416.1			$2v_1 + 94.5$
482.7	0.41	25.2	3v ₁
577.6			$3v_1 + 94.5$
642.5	0.27	34	4v ₁
735			$4v_1 + 94.5$
799.6	0.16	39	5v ₁
958.6	0.09	43	6v1
117.3	0.05	47	7v ₁
272	< 0.05	>50	8v ₁
430	< 0.05	>50	901

pers (cm⁻¹), relative intensities, full-widths at halfgnments of bands in the r.R. spectra *

	$I(v_1v_1)/$		
ṽ/cm ^{−1}	$I(v_1)$	Δν̃₄/cm ⁻¹	Assignment
69.3		<u>-</u>	_
98.3			
162.2	1.00	13.8	$\mathbf{v_i}$
208.6			
238.0			
259.8			$v_1 + 98.3$
323.5	0.60	23.6	$2v_1$
370,9			$v_1 + 208.6$
421.3			$2v_1 + 98.3$
482.6	0.33	32.3	$3v_1$
530			$2v_1 + 208.6$
585			$3v_1 + 98.3$
643.3	0.21	44	4v ₁
744.6			$4v_1 + 98.3$
800.3	0.11	50	5v ₁
906			$5v_1 + 98.3$
957.0	0.06	57	6v ₁
1 115	0.04	65	$7v_1$
1 270	ca. 0.02	ca. 75	8v ₁
1 430	< 0.02	>75	$9v_1$
(b) [Pt(cis-c	lacp)2][Pt(cis-dac	p)₂Br₂]Br₄	
158.3			
165.7			
183.7	1.00	9.5	v_i
209.0	1.00	7.5	V1
236.8			
333			2×165.7
348			$v_1 + 165.7$
368.5	0.30	14.2	2ν ₁
392.5	0.50	1718	$v_1 + 209.0$
422			$v_1 + 236.8$
513.6			v ₁ + 250.0
313.0			(2×165.7)
550.3	0.11	16.5	3v ₁
582.0	0.11	10.5	v(Pt-N)
615.7			v(ring)
734.0	0.05	21	4v ₁
765.7	0.00	~-	$v_1 + v(Pt-N)$
798.5			$v_1 + v(ring)$
, , , , , ,			·1 · · (********************************

Table 4. (continued)

920	ca. 0.03	ca. 30	5v ₁
1 110	< 0.03	>30	6v ₁

^{*} Obtained as a CsBr disc at ca. 80 K with (a) 752.5 and (b) 476.5 nm excitation.

Table 5. Wavenumbers (cm⁻¹), relative intensities, full-widths at half-maximum, and assignments of bands in the r.R. spectrum of $[Pt{(-)-dach}_2][Pt{(-)-dach}_2]I_4$ *

	$I(v_1v_1)/$		
ṽ/cm ^{−1}	$I(v_1)$	Δῦ₄/cm ^{−1}	Assignment
70.9			
94.9			
108.9			
123.2	1.00	12.6	Vi
178.0			
193.9			$v_1 + 70.9$
218.9			2×108.9
246.3	0.53	23.6	$2v_1$
320.1			$2v_1 + 70.9$
367.7	0.26	33	$3v_1$
442.1			$3v_1 + 70.9$
490.2	0.13	41	$4v_1$
616.1	0.08	47	$5v_1$
618.9			v(ring)
736	0.04	55	6ν ₁
850	0.02	67	$7v_1^-$
960	ca. 0.01	ca. 75	8v1

^{*} Obtained as a CsI disc at ca. 80 K with 752.5 nm excitation.

Table 6. Wavenumbers (cm⁻¹), relative intensities, full-widths at half-maximum, and assignments of bands in the r.R. spectra *

(a) [Pd{(±)-dach}2][Pd{(±)-dach}2Cl2]Cl4	
	$I(v_1v_1)/$		
v⊄cm ⁻¹	$I(v_1)$	$\Delta \tilde{v}_{\frac{1}{2}}/\text{cm}^{-1}$	Assignment
153.4		₹'	
183.9			
240.8	1.00	26.8	v_i
359.8			•
389.5			
483.5	0.53	50	$2v_1$
594	****		v(ring)
720.5	0.23	66	3v ₁
953.8	0.11	83	4v ₁
1 194	ca. 0.05	ca. 100	5v ₁
1 210	04. 0.05	cu. 100)
1 305			δ(H-C-H)
1 355			(11 5 11)
1 430	< 0.03		6ν,
(b) [Pd(cis-	dach)2][Pd(cis-d	lach)2Cl2]Cl4	
189			
242			$v_1(trans)$
282			v ₁ (irans)
301.9	1.00	13.4	V_1
372	1.00	13.4	v ₁
451			v(Pd-N)
596.7	0.54	28	2v ₁
675	0.54	20	241
750			$v_1 + v(Pd-N)$
896.6	0.28	40	$3v_1 + v(10 14)$
1 050	0.20	+0	$2v_1 + v(Pd-N)$
1 190	ca. 0.1	ca. 60	$4v_1 + v(Fu^{-1}v)$
1 485	<0.05	ια. σσ	4ν ₁ 5ν _τ
1 407	~0.03		2 V 1

[•] Obtained as a CsCl disc at ca. 80 K with (a) 752.5 and (b) 488.0 nm excitation.

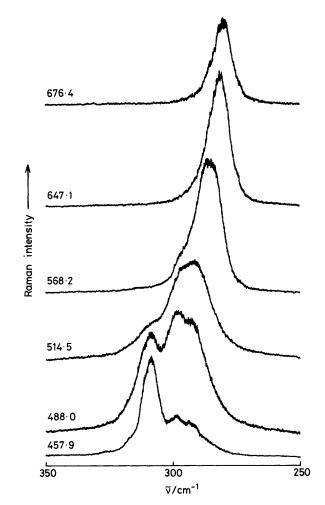


Figure 3. Shape of the v_1 band of $[Pt\{(-)-dach\}_2][Pt\{(-)-dach\}_2-Cl_2]Cl_4$ at ca. 10 K with different excitation lines

Resonance Raman Spectra.—Raman spectra were recorded for each complex with a variety of excitation lines (457.9— 799.3 nm) at ca. 80 K. The spectra are dominated in each case by a long overtone progression, v_1v_1 , where v_1 is the totally symmetric axial metal-halogen stretching mode (Tables 2—6). Surprisingly, the wavenumbers of ν_1 and its overtones (but not those of the ligand modes) appear to be dependent on the exciting lines used, decreasing reversibly (Pt-Cl by 15 cm-1, Pt-Br by 26 cm⁻¹, Pd-Cl by 59 cm⁻¹) with decreasing excitation energy (457.9-799.3 nm). However, on closer examination of the v₁ band at ca. 10 K and at a spectral resolution of 1-1.5 cm⁻¹, it was realised that the contour of this band contained several components (Figures 3-5). This observation was made only for complexes containing the trans ligand. The cis ligand gives rise to a complex with the highest value for v_1 , a result which indicates that the Pt^{IV}(N-N)₂X₂ moiety is in this case most near (of the mixed-valence complexes studied) to behaving like a free moiety, and thus with most nearly 'terminal ' (and therefore short) PtIV-X bonds.

The most probable interpretation, therefore, of the change in v_1 band structure with change in \tilde{v}_0 is that the complexes, where prepared from the unresolved ligand, are in fact mixtures of conformational isomers: $[M^{II}(trans-N-N)_2][M^{IV}(trans-N-N)_2X_2]X_4$ [Figure 1(a)—(c)], $[M^{II}(cis-N-N)_2]$ — $[M^{IV}(trans-N-N)_2X_2]X_4$ [Figure 1(d)], $[M^{II}(trans-N-N)]$ — $[M^{IV}(cis-N-N)(trans-N-N)X_2]X_4$ [Figure 1(e)], $[M^{II}(trans-N-N)]$ — $[M^{IV}(cis-N-N)(trans-N-N)]$ — $[M^{IV}(cis-N-N)(trans-N-N)X_2]X_4$ [Figure 1(f)], $[M^{II}(cis-N-N)(trans-N-N)]$ — $[M^{IV}(cis-N-N)(trans-N-N)X_2]X_4$ [Figure 1(f)], $[M^{II}(cis-N-N)(trans-N-N)]$ — $[M^{IV}(cis-N-N)(trans-N-N)X_2]X_4$ [Figure 1(f)], $[M^{II}(cis-N-N)(trans-N-N)X_2]X_4$ [Figure 1(f)], $[M^{II}(cis-N-N)(trans-N-N)X_2]X_4$ [Figure 1(f)], $[M^{II}(cis-N-N)(trans-N-N)X_2]X_4$ [Figure 1(f)], $[M^{II}(cis-N-N)(trans-N-N)X_2]X_4$ [Figure 1(f)], $[M^{II}(cis-N-N)(trans$

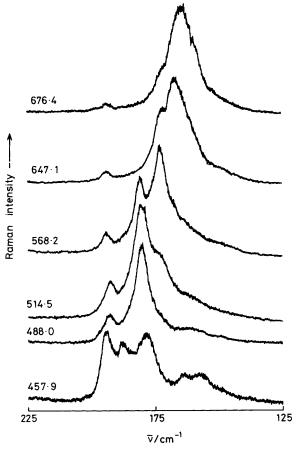


Figure 4. Shape of the v_1 band of $[Pt\{(-)-dach\}_2][Pt\{(-)-dach\}_2-Br_2]Br_4$ at ca. 10 K with different excitation lines

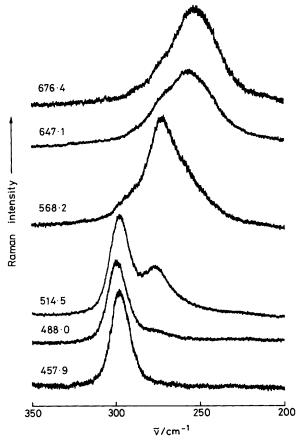


Figure 5. Shape of the v_1 band of $[Pd(dach)_2][Pd(dach)_2Cl_2]Cl_4$ at ca. 10 K with different excitation lines

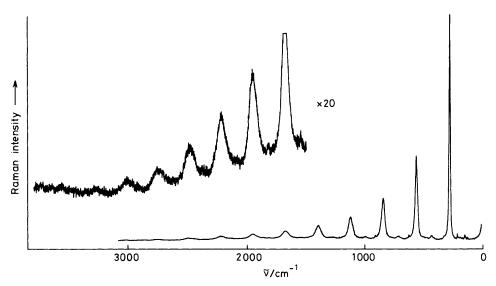


Figure 6. Resonance Raman spectrum of [Pt{(-)-dach}₂][Pt{(-)-dach}₂Cl₂]Cl₄ at ca. 80 K with 647.1 nm excitation

 $N-N_2$ [$M^{IV}(cis-N-N)_2X_2$] X_4 [Figure 1(g) and (h)], each with its own v_1 value and optimum excitation wavenumber for maximum resonance enhancement. The situation is further complicated by the possibility of the occurrence of different forms of, for example, the last of the complexes above. A

further observation is that, when exciting the r.R. spectrum of the *trans* complexes with exciting lines of wavenumber intermediate between that of the electronic band maxima of the all-*trans* and all-*cis* forms, combination bands appear involving both $v_1(\text{all-trans})$ and $v_1(\text{all-cis})$: e.g. $2v_1(\text{trans})$ at

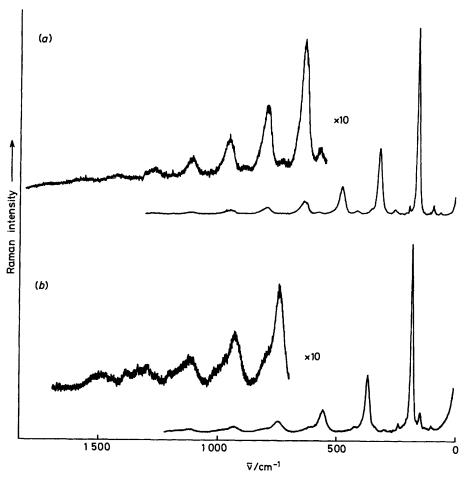


Figure 7. Resonance Raman spectra of (a) $[Pt{(-)-dach}_2][Pt{(-)-dach}_2]Br_2]Br_4$ at ca. 80 K with 752.5 nm excitation, and (b) $[Pt(cis-dach)_2][Pt(cis-dach)_2]Br_2]Br_4$ at ca. 80 K with 476.5 nm excitation

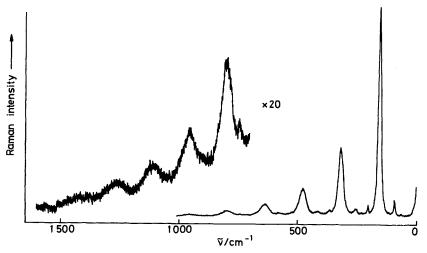


Figure 8. Resonance Raman spectrum of [Pt{(-)-dacp}₂][Pt{(-)-dacp}₂Br₂]Br₄ at ca. 80 K with 752.5 nm excitation

333 cm⁻¹, $v_1(cis) + v_1(trans)$ at 348 cm⁻¹, and $2v_1(cis)$ at 368.5 cm⁻¹ for $[Pt\{(-)-dacp\}_2][Pt\{(-)-dacp\}_2]Br_4$ with 476.5 nm excitation (Table 4). This suggests that all-trans sections and all-cis sections may exist within a single chain.

By comparison of the results for the chloro-complexes of

palladium and platinum with 1,2-diaminocyclohexane, it is evident that the wavenumber of v_1 is much more sensitive to the configuration of the ligand for Pd than for Pt, presumably on account of the smaller size of palladium ions.

The observed long overtone progressions in ν_1 (Figures

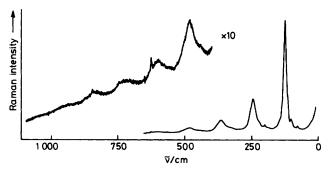


Figure 9. Resonance Raman spectrum of $[Pt{(-)-dach}_2][Pt{(-)-dach}_2]$ at ca. 80 K with 799.3 nm excitation

6—10) permit the calculation by standard procedures, 18,19 of approximate values for the harmonic wavenumbers (ω_1) and anharmonicity constants (x_{11}) for each conformer of each complex studied. The results, which are included in Table 1, indicate that ω_1 decreases in the order Cl > Br > I, Pt > Pd, cis > meso > racemate > trans, and cis-dach > cis-dacp. The x_{11} values are all small (0.0—0.9 cm⁻¹) and all the x_{11}/ω_1 values lie in the range 0—0.003. These are quite typical values for x_{11} for the v_1 mode of linear-chain complexes.

We had originally supposed that x_{11} for the chloro-complex (1) might be unusually high, due to the fact that this complex has the shortest known $Pt^{II} \cdots Pt^{IV}$ distance (5.158 Å) for a

linear-chain complex, and therefore the one for which the chlorine atom is most near to being placed centrally between the platinum atoms ($Pt^{IV}-Cl = 2.324 \text{ Å}$, $Pt^{II}-Cl = 2.834 \text{ Å}$). However, this appears not to be the case, presumably because the chlorine, even in this complex, is still much closer (by >0.5 Å) to the platinum(IV) than to the platinum(II).

Conclusion

A summary of the key properties of all the complexes studied is given in Table 1. The complexes are all strongly coloured [platinum chlorides are green, bromides are gold (except for that of cis-dach, which is purple), and the iodide is black], highly dichroic, usually forming as needles. All show very intense r.R. spectra which are dominated by the v_1v_1 progression, which is at most observed to reach as far as the eleventh harmonic. The anharmonicity constant x_{11} is small, being $<0.9 \text{ cm}^{-1}$ in all cases. The key conclusions are (a)—(c) below.

(a) Of all linear-chain chlorine-bridged complexes of the type studied, the (—)-dach complex has the shortest $Pt^{II} \cdots Pt^{IV}$ distance (5.158 Å), the lowest $Pt^{IV} \leftarrow Pt^{II}$ intervalence band maximum (19 400 cm⁻¹) and excitation profile maximum (EP_{max} .13 100 cm⁻¹), though both are approximately equal to that for { $[Pt(en)_2][Pt(en)_2Cl_2]_3[CuCl_4]_4$ (en = ethylenediamine),⁴ and the lowest value for ω_1 (285.5 cm⁻¹). This is persuasive evidence that all these quantities are related to one another.

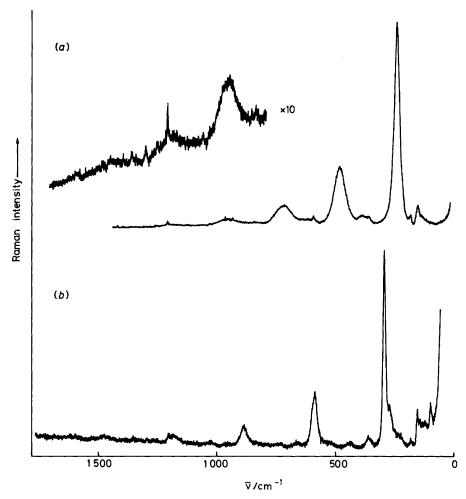


Figure 10. Resonance Raman spectrum of [Pd(dach)₂][Pd(dach)₂Cl₂]Cl₄ at ca. 80 K, (a) with 752.5 nm excitation and (b)with 488.0 nm excitation

- (b) The trends in v_{max} , EP_{max} , and v_1 are all in the order Cl > Br > I, Pt > Pd, cis > meso > racemate > trans, and cis-dach > cis-dacp. These results indicate that, as expected, the $Pt^{II} \cdots Pt^{IV}$ distance is affected by steric factors associated with the amine ligands, but that this distance itself is not the only factor which affects the extent of interaction between the platinum atoms. Clearly the overlap integrals between suitable orbitals on the metal atom and the bridging ligand are also important, and this factor is at a maximum (among bridging ligands) for iodine, and higher for palladium than for platinum.
- (c) The different configurations of dach seem all capable of forming linear-chain complexes, all with slightly different v_{max} and v_1 values; a mixture of isomers with the mixed-valence complexes is thus normally obtained. A consequence of this is that there is an apparent variation of v_1 with excitation wavenumber. At high resolution, however, the separate v_1 bands can be resolved, and it is clear that the observations are a consequence of exciting v_1 of different isomers more effectively at different excitation wavenumbers.

Acknowledgements

The authors are indebted to the S.E.R.C., Johnson Matthey Ltd., and the University of London for financial support. M. K. thanks University College London for a studentship.

References

1 R. J. H. Clark, Ann. N.Y. Acad. Sci., 1978, 313, 672, and refs. therein.

- 2 R. J. H. Clark and P. C. Turtle, Inorg. Chem., 1978, 17, 2526.
- 3 J. R. Campbell, R. J. H. Clark, and P. C. Turtle, *Inorg. Chem.*, 1978, 17, 3622.
- 4 R. J. H. Clark, M. Kurmoo, H. J. Keller, B. Keppler, and U. Traeger, J. Chem. Soc., Dalton Trans., 1980, 2498.
- 5 R. J. H. Clark and M. Kurmoo, Inorg. Chem., 1980, 19, 3522.
- 6 R. J. H. Clark and M. Kurmoo, J. Chem. Soc., Chem. Commun., 1980, 1258; J. Chem. Soc., Dalton Trans., 1981, 524.
- 7 R. J. H. Clark, M. Kurmoo, A. M. R. Galas, and M. B. Hursthouse, *Inorg. Chem.*, 1981, 20, 4206; and unpublished work.
- 8 R. J. H. Clark and M. Kurmoo, Inorg. Chim. Acta, 1981, 51, 85.
- 9 K. P. Larsen and H. Toftlund, Acta Chem. Scand., Ser. A, 1977, 31 182
- 10 H. Toftlund and T. Lair, Acta Chem. Scand., Ser. A, 1977, 31, 651
- 11 H. Toftlund and E. Pedersen, Acta Chem. Scand., 1972, 26, 4019.
- 12 R. Saito and Y. Kidani, Chem. Lett., 1976, 123.
- 13 R. G. Asperger and C. F. Liu, Inorg. Chem., 1965, 4, 1492.
- 14 F. Galsbøl, P. Steenbøl, and B. S. Sorensen, Acta Chem. Scand., 1972, 26, 3605.
- 15 C. J. L. Lock and P. Pilon, Acta Crystallogr., Sect. B, 1981, 37, 45
- 16 K. Kamasawa, K. Matsumoto, S. Ooi, R. Saito, and Y. Kidani, Bull. Chem. Soc. Jpn., 1981, 54, 1072.
- 17 C. J. Hawkins, 'Absolute Configuration of Metal Complexes,' Wiley-Interscience, New York, 1971.
- 18 J. R. Campbell and R. J. H. Clark, Mol. Phys., 1978, 36, 1133.
- 19 R. J. H. Clark and B. Stewart, Struct. Bonding, 1979, 36, 1.

Received 24th February 1982; Paper 2/343